from sqlalchemy import create_engine, text import pandas as pd import datetime as dt import matplotlib.pyplot as plt # Get the relevant data engine = create_engine('sqlite:///history/data.sqlite') query = 'SELECT * FROM messages' data = pd.read_sql_query(sql=text(query), con=engine.connect()) data = data[data['content']=='Coffee'] grand_total = len(data) data['datetime'] = pd.to_datetime(data['date']) # Calculate weekdays and hours data['weekday'] = data['datetime'].dt.dayofweek + 1 data['hour'] = data['datetime'].dt.hour data['day'] = data['datetime'].dt.day lastmonth = (dt.datetime.now().month - 1) % 12 monthly = data[data['datetime'].dt.month == lastmonth].copy() # Make plots, first for monthly, then for all time monthly['count'] = 1 monthly.groupby(['weekday']).count()['count'].plot.bar(x='weekday', align='center') plt.xticks(rotation=0) plt.title('Weekday frequency of last month') plt.savefig('files/monthly_weekdays.png') plt.close() monthly.groupby(['hour']).count()['count'].plot.bar(x='hour', align='center') plt.xticks(rotation=0) plt.title('Hourly frequency of last month') plt.savefig('files/monthly_hour.png') plt.close() data['count'] = 1 data.groupby(['weekday']).count()['count'].plot.bar(x='weekday', align='center') plt.xticks(rotation=0) plt.title('Weekday frequency of all time') plt.savefig('files/all_weekdays.png') plt.close() data.groupby(['hour']).count()['count'].plot.bar(x='hour', align='center') plt.title('Hourly frequency of all time') plt.savefig('files/all_hour.png') plt.close() # Calculate on which day the most coffee was made aggregated = monthly.groupby(['day']).count()['count'] message1 = 'Last month, coffee was made {amount} times.'.format(amount=len(monthly)) + ' Most coffee was made on day {day} of the month, with a total amount of {amount} times.'.format(day=aggregated.idxmax(),amount=aggregated.max()) + ' From the start of this chat, a grand total amount of {amount} times coffee was made.'.format(amount=grand_total) f = open('message.txt', 'w') f.write(message1) f.close()